
Calendering of Non-Newtonian Fluids 

WAN RAMLI WAN DAUD, Jabatan Kejuruteraan Kimia dan Proses, 
Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia 

Synopsis 

The calendering of non-Newtonian fluids by two rotating cylinders to produce thin films of 
fluids finds wide application in polymer sheet-making and fooddrying industries. Theoretical 
work has previously been devoted to the symmetrical case where the cylinders are of equal 
diameters rotating at the same speed. The present work proposes a new one-film theory of 
calendering of power law fluids for unequal radii and surface velocities of the calendering 
cylinders. The relationship between the dimensionless thickness of the calendered fluid, A: 
and that of the incoming fluid, A,’ is shown to be a function of the ratio of the surface velocities 
of the cylinders and the power law index. The result further shows that A: tends to asymptote 
after the second decade of A‘*. 

INTRODUCTION 

Previous work on the calendering of non-Newtonian fluids by Brazinsky 
et al. and Alston and Astill have always been confined to the symmetrical 
case where the cylinders are of equal diameters rotating at the same speed. 
In real applications as in the drum dryer, one often encounters the more 
difficult unsymmetrical case where the cylinders are of unequal diameters 
rotating at different speeds. Takserman-Krozer et al. have investigated 
the unsymmetrical case for Newtonian fluids only. The following theoretical 
work attempted to solve the unsymmetrical case for power law fluids. 

ASSUMPTIONS AND GENERAL EQUATIONS 
A non-Newtonian fluid flowing isothermally between two cylinders of 

radii R1 and & rotating at the surface velocities of u1 and u2, respectively, 
is considered (refer to Fig. 1). 

The following assumptions are made: 

1. The fluid can be represented by the power law model of consistency 
factor K and index n .  

2. The width of the clearance between the drum and the applicator roller 
(the “nip”), ZW, is so small as to be negligible in comparison with length 
and radii of the cylinders. 
3. Since the general movement of the fluid is mainly in the x direction, 

the velocity of the fluid in they  direction is small. 
4. The gradient in the x direction of the velocity in the same direction 

is negligible compared to its gradient in the y direction. 
5. The pressure gradient is a function of x only. 
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Cylinder I 
Fig. 1. Calendering of non-Newtonian fluids. 

The general equation becomes 

dP d 
dx dy 
- = - (7,J 

where 

Where P is the pressure and u,  is the velocity in the x direction. 
The boundary conditions are constructed by assuming that the velocity 

of the fluid at the surfaces of the cylinder is equal to the velocities of the 
surfaces. The boundary conditions are 

where y l ( x )  and y2(x)  are the curves representing the surfaces of the cyl- 
inders, u 1  and u2 are the velocities of the surfaces of the cylinders and x, 
and x ,  are the inlet and exit x ordinate of the nip. To simplify further, the 
y ordinate of the position of zero velocity gradient y,(x) is given as 
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The Equations (1)-(7) can be rewritten in dimensionless form. 

1 dP* 1 d duz cn-l)du,* K * d x *  - x d y * ( i F l  p) 

X f  = x f  P* = 0 

where the dimensionless variables and parameters are 

Y y* = - 
W 

P p* = - 
p m  

x =  f1 + 4 d@ 

W a=- 
& 

(11) 

(12) 
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SOLUTION 

Equation (8) is integrated twice with respect to y *  and the boundary 
condition (13) is applied. 

For convenience, the y * variable is transformed to the z * variable defined 
bY 

Equation is rewritten as 

1 dP*' n (n+l) 
z *  I( 

K *  d x *  (n + 1) 

The boundary conditions (9) and (10) are applied on Eq. (25) 

The flowrate of fluid through the nip is obtained by integrating Eq. (25) 
with respect to z *  from one surface of the cylinders to the other. 

where 

On applying the boundary conditions (11) and (12) on Eq. (27), the flowrate 
can be written as 

Q* = u,* (2ze*  - zle*) (29) 
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Substituting Eq. (29) into (27) and rearranging the result gives 

1 dP* 
K *  dx* 
-- 

Equation (30) is integrated with respect to x * and boundary conditions (11) 
and (12) are applied 

The surface of the cylinders can be approximated by 

2 
(1 + U) y1* ( x * )  = - 1 + - x * 2  

Hence 

22* - z1* = y2* = y1* = 2(1 + x * 2 )  

Equations (34), (35), and (36) are substituted into Eq. (30). 

(32) 

(33) 

(34) 

(35) 
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Equation (37) is then substituted into Eq. (25) which is evaluated at z*  = 
zz* .  The resulting equation is 

L d 

where 

L d 

It can be shown that 

Equation (31) can be rewritten as 

I I n* 
- u z * ]  (1 + 6YZn + 

r. n - 11 
Q! 

e *  

The dimensionless thickness of the incoming fluid is given by 

Ai* = 2(1 + x i* ' )  (42) 

The dimensionless thickness of the calendered fluid is given by 

A,* = 2(1 + x , * ' )  (43) 

RESULTS AND DISCUSSION 

A solution involving the determination of 8 for given values of &* and 
x * using Eq. (38) is too tedious. The easier alternative is the determination 

(real values only) for given values of 6. These of the values of 

and 6 are then used to determine x , *  for any paired values of 

'* 
2(1 + x * ' )  

'* 
2(1 + x * 2 )  



CALENDERING OF NON-NEWTONIAN FLUIDS 2463 

given x * such that the integral 41 is zero. The results are plotted in Figure 
2 and 3. 

These results indicate clearly that by expressing X* as in Eq. (14), the 
dimensionless thickness of the calendered sheet, A,* is apparently inde- 
pendent of the ratio of the radii of the cylinders v and the nip width factor 
4. This result is not surprising because the expression in Eq. (14) actually 
transforms the asymmetrical c s e  to an equivalent symetrical problem. The 
relationship between A,* and A , *  is shown to be a function of the ratio of 
the velocities of the surfaces of the cylinders v and the power law index of 
the fluid n. 

Figure 2 shows that for small A , *  (less than lo), A,* increases as v 
increases. However for A,* larger than 10, A,* decreases as w increases. 
Figure 3 on the other hand indicates that A,* decreases with increasing n. 
A,* tends to asymptotes after the second decade of A , * .  This last result is 
consistent with the result of Brazinsky et aL3 for the symmetrical case and 
that of Takserman-Krozer et al.3 for the unsymmetrical case with New- 
tonian fluids. In practical terms, it means that any increase in the thickness 
of the incoming fluid after the second decade of A , * does not increase the 
thickness of the calendered film by any significant amount. In other words, 
excessive flooding of the entrance of the nip does not increase the thickness 
of the film. 

CONCLUSION 
The dimensionless thickness of the calendered film A,* was found theo- 

retically to depend explicitly on the power law index n of the fluid, the 
relative velocities of the cylinders v and the incoming dimensionless thick- 
ness of the fluid A , *. A, * is apparently independent of the ratio of the radii 
of the cylinders o only because the dimensionless space variable x *  has 
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Fig. 2. Theoretical curves of A,'/2 versus A,'/2 for n = 0.6 and various values of v. 
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Fig. 3. Theoretical curves of Ae* /2  versus Ai*/Z for v = 1.5 and various values of n. 

been transformed to include a within it. Ae * approaches an asymptote after 
the second decade of A ,  *. 

NOMENCLATURE 

Latin Symbols 

Consistency coefficient of a power law fluid 
Dimensionless coefficient of the consistency coefficient of a power 
law fluid 
Index for power law fluid 
Speed of rotation of the drum 
Pressure 
Dimensionless pressure 
Maximum pressure 
Volumetric flow rate 
Dimensionless flow rate 
Radius of cylinder 1 
Radius of cylinder 2 
Velocity of the surface of cylinder 1 
Velocity of air near the surface of the drum 
Maximum velocity 
Dimensionless maximum velocity 
Maximum velocity at the exit of nip 
Velocity in the x direction 
Dimensionless velocity in the x direction 
Half width of nip 
Space variable 
Dimensionless space variable 
Value of space variable x at the exit of the nip 
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Dimensionless x 
Value of space variable x at the inlet of the nip 
Dimensionless x i  
Space variable 
Dimensionless space variable 
Curve representing the surface of cylinder 1 
Dimensionless y (x  1 
Curve representing the surface of cylinder 2 
Dimensionless y z(x ) 
Value of space variable y at the point of maximum velocity 
Dimensionless y ,(x ) 
Space variable 
Dimensionless z 
Curve representing the surface of cylinder 1 
Dimensionless z (x ) 
Curve representing the surface of cylinder 
Dimensionless zz(x 1 

Greek Symbols 

Dimensionless coefficient involving n and 8 
Dimensionless coefficient involving the power law index n 
The ratio of the distance between the surface of cylinder 2 and the 
point of maximum velocity to that between the surface of cylinder 
1 and the point of maximum velocity 
Ratio of'the velocity of the surface of cylinder 2 to that of 
cylinder 1 
The ratio of the radius of cylinder 2 to that of cylinder 1 
Shear stress 
Ratio of the half width of nip to the radius of cylinder 2 
Dimensionless coefficient 
Dimensionless thickness of the calendered fluid 
Dimensionless thickness of the incoming fluid 
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